Fission Yeast SCYL1/2 Homologue Ppk32: A Novel Regulator of TOR Signalling That Governs Survival during Brefeldin A Induced Stress to Protein Trafficking
نویسندگان
چکیده
Target of Rapamycin (TOR) signalling allows eukaryotic cells to adjust cell growth in response to changes in their nutritional and environmental context. The two distinct TOR complexes (TORC1/2) localise to the cell's internal membrane compartments; the endoplasmic reticulum (ER), Golgi apparatus and lysosomes/vacuoles. Here, we show that Ppk32, a SCYL family pseudo-kinase, is a novel regulator of TOR signalling. The absence of ppk32 expression confers resistance to TOR inhibition. Ppk32 inhibition of TORC1 is critical for cell survival following Brefeldin A (BFA) induced stress. Treatment of wild type cells with either the TORC1 specific inhibitor rapamycin or the general TOR inhibitor Torin1 confirmed that a reduction in TORC1 activity promoted recovery from BFA induced stress. Phosphorylation of Ppk32 on two residues that are conserved within the SCYL pseudo-kinase family are required for this TOR inhibition. Phosphorylation on these sites controls Ppk32 protein levels and sensitivity to BFA. BFA induced ER stress does not account for the response to BFA that we report here, however BFA is also known to induce Golgi stress and impair traffic to lysosomes. In summary, Ppk32 reduce TOR signalling in response to BFA induced stress to support cell survival.
منابع مشابه
Fission yeast Tor1 functions as part of TORC1 to control mitotic entry through the stress MAPK pathway following nutrient stress.
TOR signalling coordinates growth and division to control cell size. Inhibition of Schizosaccharomyces pombe Tor1, in response to a reduction in the quality of the nitrogen source (nutrient stress), promotes mitotic onset through activation of the mitogen-activated protein kinase (MAPK) Sty1 (also known as Spc1). Here we show that ;nutrient starvation' (complete withdrawal of nitrogen or leucin...
متن کاملPhosphorylation of the TOR ATP binding domain by AGC kinase constitutes a novel mode of TOR inhibition
TOR (target of rapamycin) signaling coordinates cell growth, metabolism, and cell division through tight control of signaling via two complexes, TORC1 and TORC2. Here, we show that fission yeast TOR kinases and mTOR are phosphorylated on an evolutionarily conserved residue of their ATP-binding domain. The Gad8 kinase (AKT homologue) phosphorylates fission yeast Tor1 at this threonine (T1972) to...
متن کاملFeeding Artemia larvae with yeast heat shock proteins 82 (HSPs82) to enhance the resistance against abiotic stresses (hyperosmotic and high temperatures)
Feeding farmed Artemia with yeast heat shock proteins is a novel way to protect them from stress conditions during the culture. In this study, the effect of feeding with stressed new identified Saccharomyces cerevisiae strain YG3-1 yeasts (containing induced heat shock proteins) on the survival of Artemia in stress conditions, was evaluated. For this purpose, heat shock proteins 82 (Hsps 82) o...
متن کاملTORC1 Regulates Developmental Responses to Nitrogen Stress via Regulation of the GATA Transcription Factor Gaf1
UNLABELLED The TOR (target of rapamycin [sirolimus]) is a universally conserved kinase that couples nutrient availability to cell growth. TOR complex 1 (TORC1) in Schizosaccharomyces pombe positively regulates growth in response to nitrogen availability while suppressing cellular responses to nitrogen stress. Here we report the identification of the GATA transcription factor Gaf1 as a positive ...
متن کاملTORC1-Dependent Phosphorylation Targets in Fission Yeast
Target of rapamycin (TOR) kinase controls cell metabolism and growth in response to environmental cues such as nutrients, growth factors, and stress. TOR kinase is widely conserved across eukaryotes. As in other organisms, the fission yeast Schizosaccharomyces pombe has two types of TOR complex, namely TOR complex 1 (TORC1) and TORC2. It is interesting that the two TOR complexes in S. pombe hav...
متن کامل